Electrical power systems quality / Roger C. Dugan ... [el al.].

Por: Colaborador(es): Idioma: Inglés Detalles de publicación: New York: McGraw-Hill, 2003Edición: 2ndDescripción: 528 pTipo de contenido:
  • texto
Tipo de medio:
  • sin mediación
Tipo de soporte:
  • volumen
ISBN:
  • 007138622X
Tema(s):
Contenidos:
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Signatura topográfica Estado Fecha de vencimiento Código de barras Reserva de ítems
Libro Libro Facultad Regional Santa Fe - Biblioteca "Rector Comodoro Ing. Jorge Omar Conca" 621.316.1:658.562 EL25 (Navegar estantería(Abre debajo)) Prestado Sólo Consulta 20/12/2024 8118
Total de reservas: 0

CONTENIDO
Foreword XIII
Acknowledgments XV
Chapter 1. Introduction 1
1.1 What Is Power Quality? 3
1.2 Power Ouality 5
1.3 Why Are We Concerned about Power Quality? 6
1.4 The Power Ouality Evaluation Procedure 8
1.5 Who Should Use This Book 9
1.6 Overview of the Contents 9
Chapter 2. Terms and Definitions 11
2.1 Need for a Consistent Vocabulary 11
2.2 General Classes of Power Quality Problems 12
2.3 Transients 15
2.3.1 Impulsive Transient 15
2.3.2 Oscillatory Transient 16
2.4 Long-Duration Voltage Variations 17
2.4.1 Overvoltage 19
2.4.2 Undervoltage 19
2.4.3 Sustained Interruptions 19
2.5 Short-Duration Voltage Variations 20
2.5.1 Interruption 20
2.5.2 Sags (Dips) 20
2.5.3 Swells 23
2.6 Voltage Imbalance 24
2.7 Waveform Distortion 24
2.8 Voltage Fluctuation 28
2.9 Power Frequency Variations 30
2.10 Power Quality Terms 31
2.11 Ambiguous Terms 39
2.12 CBEMA and ITI Curves 40
2.13 References 41
Chapter 3. Voltage Sags and Interruptions 43
3.1 Sources of Sags and Interruptions 43
3.2 Estimating Voltage Sag Performance 47
3.2.1 Area of Vulnerability 48
3.2.2 Equipment Sensitivity to Voltage Sags 49
3.2.3 Transmission System Sag Performance Evaluation 51
3.2.4 Utility Distribution System Sag Performance Evaluation 54
3.3 Fundamental Principles of Protection 59
3.4 Solutions at the End-User Level 60
3.4.1 Ferroresonant Transformers 61
3.4.2 Magnetic Synthesizers 63
3.4.3 Active Series Compensators 64
3.4.4 On-Line UPS 66
3.4.5 Standby UPS 66
3.4.6 Hybrid UPS 66
3.4.7 Motor-Generator Sets 67
3.4.8 Flywheel Energy Storage Systems 68
3.4.9 Superconducting Magnetic Energy Storage (SMES) Devices 69
3.4.10 Static Transfer Switch es and Fast Transfer Switches 71
3.5 Evaluating the Economics of Different Ride - Through Alternatives 72
3.5.1 Estimating the Costs for the Voltage Sag Events 73
3.5.2 Characterizing the Cost and Effectiveness for Solution Alternatives 74
3.5.3 Performing Comparative Economic Analysis 75
3.6 Motor-Starting Sags 78
3.6.1 Motor-Starting Methods 79
3.5.2 Estimating the Sag Severity during Full-Voltage Starting 80
3.7 Utility System Fault-Clearing Issues 81
3.7.1 Overcurrent Coordination Principles 82
3.7.2 Fuses 83
3.7.3 Reclosing 86
3.7.4 Fuse Saving 89
3.7.5 Reliability 90
3.7.6 Impact of Eliminating Fuse Saving 92
3.7.7 Increased Sectionalizing 94
3.7.8 Midline or Tap Reclosers 100
3.7.9 Instantaneous Reclosing 100
3.7.10 Single-Phase Tripping 101
3.7.11 Current-Limiting Fuses 102
3.7.12 Adaptive Relaying 103
3.7.13 Ignoring Third-Harmonic Currents 104
3.7.14 Utility Fault Prevention 105
3.7.15 Fault Locating 107
3.8 References 109
Chapter 4. Transient Overvoltages 111
4.1 Sources of Transient Overvoltages 111
4.1.1 Capacitor Switching 111
4.1.2 Magnification of Capacitor-Switching Transients 114
4.1.3 Lightning 117
4.1.4 Ferroresonance 120
4.1.5 Other Switching Transients 127
4.2 Principles of Overvoltage Protection 129
4.3 Devices for Overvoltage Protection 133
4.3.1 Surge Arresters and Transient Voltage Surge Suppressors 133
4.3.2 Isolation Transformers 134
4.3.3 Low-Pass Filters 135
4.3.4 Low-Impedance Power Conditioners 136
4.3.5 Utility Surge Arresters 137
4.4 Utility Capacitor-Switching Transients 140
4.4.1 Switching Times 140
4.4.2 Preinsertion Resistors 140
4.4.3 Synchronous Closing 141
4.4.4 Capacitor Location 144
4.5 Utility System Lightning Protection 145
4.5.1 Shielding 145
4.5.2 Line Arresters 146
4.5.3 Low-Side Surges 147
4.5.4 Cable Protection 152
4.5.5 Scout Arrester Scheme 156
4.6 Managing Ferroresonance 157
4.7 Switching Transient Problems with Loads 160
4.7.1 Nuisance Tripping of ASDs 161
4.7.2 Transients from Load Switching 161
4.7.3 Transformer Energizing 163
4.8 Computer Tools for Transients Analysis 164
4.9 References 166
Chapter 5. Fundamentals of Harmonics 167
5.1 Harmonic Distortion 168
5.2 Voltage versus Current Distortion 171
5.3 Harmonics versus Transients 172
5.4 Power System Quantities under Nonsinusoidal Conditions 173
5.4.1 Active, Reactive, and Apparent Power 173
5.4.2 Power Factor: Displacement and True 177
5.4.3 Harmonic Phase Sequences 178
5.4.4 Triplen Harmonics 179
5.5 Harmonic Indices 181
5.5.1 Total Harmonic Distortion 181
5.5.2 Total Demand Distortion 183
5.6 Harmonic Sources from Commercial Loads 184
5.6.1 Single-Phase Power Supplies 185
5.6.2 Fluorescent Lighting 186
5.6.3 Adjustable-Speed Drives for HVAC and Elevators 188
5.7 Harmonic Sources from Industrial Loads 189
5.7.1 Three-Phase Power Converters 190
5.7.2 Arcing Devices 194
5.7.3 Saturable Devices 195
5.8 Locating Harmonic Sources 197
5.9 System Response Characteristics 199
5.9.1 System Impedance 199
5.9.2 Capacitor Impedance 201
5.9.3 Parallel Resonance 203
5.9.4 Series Resonance 206
5.9.5 Effects of Resistance and Resistive Load 208
5.10 Effects of Harmonic Distortion 209
5.10.1 Impact on Capacitors 210
5.10.2 Impact on Transformers 211
5.10.3 Impact on Motors 215
5.10.4 Impact on Telecomunications 216
5.10.5 Impact on Energy and demand Metering 217
5.11 Interharmonics 220
5.12 References 223
5.13 Bibliography 224
Chapter 6. Applied Harmonics 225
6.1 Harmonic Distortion Evaluations 225
6.1.1 Concept of Point of Common Coupling 226
6.1.2 Harmonic Evaluations on the Utility System 228
6.1.3 Harmonic Evaluation for End-User Facilities 230
6.2 Principles for Controlling Harmonics 233
6.2.1 Reducing Harmonic Currents in Loads 233
6.2.2 Filtering 234
6.2.3 Modifying the System Frequency Response 234
6.3 Where to Control Harmonics 235
6.3.1 On Utility Distribution Feeders 235
6.3.2 In End-User Facilities 237
6.4 Harmonic Studies 237
6.4.1 Harmonic Study Procedure 238
6.4.2 Developing a System Model 239
6.4.3 Modeling Harmonic Sources 241
6.4.4 Computer Tools for Harmonics Analysis 243
6.4.5 Harmonic Analysis by Computer-Historical Perspective 245
6.5 Devices for Controlling Harmonic Distortion 248
6.5.1 In-Line Reactors or Chokes 248
6.5.2 Zigzag Transformers 251
6.5.3 Passive Filters 252
6.5.4 Active Filters 262
6.6 Harmonic Filter Design: A Case Study 264
6.7 Case Studies 273
6.7.1 Evaluation of Neutral Loading and Transformer Derating 273
6.7.2 Interharmonics Caused by Induction Furnaces 275
6.8 Standards on Harmonics 282
6.8.1 IEEE Standard 519-1992 282
6.8.2 Overview of IEC Standards on Harmonics 284
6.8.3 IEC 61000-2-2 285
6.8.4 IEC 61000-3-2 and IEC 61000-3-4 285
6.8.5 IEC 61000-3-6 288
6.8.6 NRS 048-02 292
6.8.7 EN 50160 292
6.9 References 293
6.10 Bibliography 294
Chapter 7. Long-Duration Voltage Variations 295
7.1 Principles of Regulating the Voltage 295
7.2 Devices for Voltage Regulation 296
7.2.1 Utility Step-Voltage Regulators 297
7.2.2 Ferroresonant Transformers 298
7.2.3 Electronic Tap-Switching Regulators 299
7.2.4 Magnetic Synthesizers 299
7.2.5 On-Line UPS Systems 300
7.2.6 Motor-Generator Sets 300
7.2.7 Static Var Compensators 300
7.3 Utility Voltage Regulator Application 301
7.3.1 Line Drop Compensator 303
7.3.2 Regulators in Series 305
7.4 Capacitors for Voltage Regulation 306
7.4.1 Shunt Capacitors 307
7.4.2 Series Capacitors 307
7.5 End-User Capacitor Application 308
7.5.1 Location for Power Factor Correction Capacitors 308
7.5.2 Voltage Rise 310
7.5.3 Reduction in Power System Losses 310
7.5.4 Reduction in Line Current 311
7.5.5 Displacement Power Factor versus True Power Factor 311
7.5.6 Selecting the Amount of Capacitance 312
7.6 Regulating Utility Voltage with Distributed Resources 313
7.7 Flicker 316
7.7.1 Sources of Flicker 319
7.7.2 Mitigation Techniques 321
7.7.3 Quantifying Flicker 324
7.8 References 324
7.9 Bibliography 325
Chapter 8. Power Quality Benchmarking 327
8.1 Introduction 328
8.2 Benchmarking Process 328
8.3 RMS Voltage Variation Indices 331
8.3.1 Characterizing RMS Variation Events 331
8.3.2 RMS Variation Performance Indices 334
8.3.3 SARFI for the EPRI DPQ Project 336
8.3.4 Example Index Computation Procedure 336
8.3.5 Utility Applications 338
8.4 Harmonics Indices 339
8.4.1 Sampling Techniques 339
8.4.2 Characterization of Three-Phase Harmonic Voltage Measurements 341
8.4.3 Definition of Harmonic Indices 342
8.4.4 Harmonic Benchmark Data 345
8.4.5 Seasonal Effects 346
8.5 Power Quality Contracts 347
8.5.1 RMS Variations Agreements 348
8.5.2 Harmonics Agreements 348
8.5.3 Example Contract 349
8.6 Power Quality Insurance 352
8.6.1 Overview of Power Quality Insurance Concept 353
8.6.2 Designing an Insurance Policy 354
8.6.3 Adjusting for PQ Investment Costs 355
8.7 Power Quality State Estimation 356
8.7.1 General Approach 356
8.7.2 Number of Monitors 358
8.7.3 Estimating RMS Variations 360
8.7.4 Simulation Engine Requirements 361
8.8 Including Power Quality in Distribution Planning 362
8.8.1 Planning Process 362
8.8.2 Risk versus Expected Value 365
8.8.3 System Simulation Tools 365
8.8.4 Fault Incidence Rates 366
8.8.5 Overcurrent Device Response 367
8.8.6 Customer Damage Costs 370
8.9 References 371
8.10 Bibliography 372
Chapter 9. Distributed Generation and Power Quality 373
9.1 Resurgence of DG 373
9.1.1 Perspectives on DG Benefits 374
9.1.2 Perspectives on Interconnection 375
9.2 DG Technologies 377
9.2.1 Reciprocating Engine Genset 377
9.2.2 Combustion (Gas) Turbines 378
9.2.3 Fuel Cells 380
9.2.4 Wind Turbines 381
9.2.5 Photovoltaic Systems 382
9.3 Interface to the Utility System 383
9.3.1 Synchronous Machines 384
9.3.2 Asynchronous (Induction) Machines 385
9.3.3 Electronic Power Inverters 386
9.4 Power Quality Issues 389
9.4.1 Sustained Interruptions 389
9.4.2 Voltage Regulation 390
9.4.3 Harmonics 391
9.4.4 Voltage Sags 391
9.5 Operating Conflicts 392
9.5.1 Utility Fault-Clearing Requirements 392
9.5.2 Reclosing 393
9.5.3 Interference with Relaying 395
9.5.4 Voltage Regulation Issues 398
9.5.5 Harmonics 402
9.5.6 Islanding 403
9.5.7 Ferroresonance 405
9.5.8 Shunt Capacitor Interaction 408
9.5.9 Transformer Connections 409
9.6 DG on Low-Voltage Distribution Networks 415
9.6.1 Fundamentals of Network Operation 417
9.6.2 Summary of Network Interconnection Issues 419
9.6.3 Integration Techniques for DG on Networks 420
9.7 Siting DG 423
9.8 Interconnection Standards 427
9.8.1 Industry Standards Efforts 427
9.8.2 Interconnection Requirements 427
9.8.3 A Simple Interconnection 429
9.8.4 A Complex Interconnection 430
9.9 Summary 433
9.10 References 434
9.11 Bibliography 435
Chapter 10. Wiring and Grounding 437
10.1 Resources 437
10.2 Definitions 438
10.3 Reasons for Grounding 441
10.4 Typical Wiring and Grounding Problems 443
10.4.1 Problems with Conductors and Connectors 443
10.4.2 Missing Safety Ground 444
10.4.3 Multiple Neutral-to-Ground Connections 444
10.4.4 Ungrounded Equipment 444
10.4.5 Additional Ground Rods 444
10.4.6 Ground Loops 445
10.4.7 Insufficient Neutral Conductor 445
10.5 Solutions to Wiring and Grounding Problems 446
10.5.1 Proper Grounding Practices 446
10.5.2 Ground Electrode (Rod) 447
10.5.3 Service Entrance Connections 447
10.5.4 Panel Board 448
10.5.5 Isolated Ground 449
10.5.6 Separately Derived Systems 450
10.5.7 Grounding Techniques for Signal Reference 451
10.5.8 More on Grounding for Sensitive Equipment 452
10.5.9 Summary of Wiring and Grounding Solutions 453
Bibliography 454
Chapter 11. Power Quality Monitoring 455
11.1 Monitoring Considerations 456
11.1.1 Monitoring as Part of a Facility Site Survey 457
11.1.2 Determining What to Monitor 458
11.1.3 Choosing Monitoring Locations 461
11.1.4 Options for Permanent Power Quality Monitoring Equipment 463
11.1.5 Disturbance Monitor Connections 465
11.1.6 Setting Monitor Thresholds 465
11.1.7 Quantities and Duration to Measure 466
11.1.8 Finding the Source of a Disturbance 467
11.2 Historical Perspective of Power Quality Measuring Instruments 467
11.3 Power Quality Measurement Equipment 470
11.3.1 Types of Instruments 471
11.3.2 Wiring and Grounding Testers 472
11.3.3 Multimeters 473
11.3.4 Digital Cameras 474
11.3.5 Oscilloscopes 475
11.3.6 Disturbance Analyzers 475
11.3.7 Spectrum Analyzers and Harmonic Analyzers 477
11.3.8 Combination Disturbance and Harmonic Analyzers 479
11.3.9 Flicker Meters 480
11.3.10 Smart Power Quality Monitors 487
11.3.11 Transducer Requirements 488
11.4 Assessment of Power Quality Measurement Data 494
11.4.1 Off-Line Power Quality Data Assessment 496
11.4.2 On-Line Power Quality Data Assessment 498
11.5 Application of Intelligent Systems 498
11.5.1 Basic Design of an Expert System for Monitoring Applications 499
11.5.2 Example Applications of Expert Systems 502
11.5.3 Future Applications 511
11.5.4 Power Quality Monitoring and the Internet 513
11.5.5 Summary and Future Direction 514
11.6 Power Quality Monitoring Standards 518
11.6.1 IEEE 1159: Guide for Power Quality Monitoring 518
11.6.2 IEC 61000-4-30: Testing and Measurement TechniquesPower Quality Measurement Methods 519
11.7 References 520
11.8 Bibliography 521
Index 523

No hay comentarios en este titulo.

para colocar un comentario.