000 05414nam a2200301 a 4500
003 AR-sfUTN
008 170717b ||||| |||| 00| 0 d
020 _a0387945350
040 _cAR-sfUTN
041 _aeng
080 _a004.42:51 H355
_22000
100 1 _aHeck, Andre
_96131
245 1 0 _aIntroduction to Maple /
_cAndre Heck.
250 _a2nd
260 _aThe Netherlands:
_bSpringer,
_c1996
300 _a699 p.
336 _2rdacontent
_atexto
_btxt
337 _2rdamedia
_asin mediaciĆ³n
_bn
338 _2rdacarrier
_avolumen
_bnc
505 8 0 _aCONTENIDO 1 Introduction to Computer Algebra 1 1.1 What is Computer Algebra? 1 1.2 Computer Algebra Systems 2 1.3 Some Properties of Computer Algebra Systems 5 1.4 Advantages of Computer Algebra 11 1.5 Limitations of Computer Algebra 24 1.6 Design of Maple 30 2 The First Steps: Calculus on Numbers 35 2.1 Getting Started 35 2.2 Getting Help 38 2.3 Integers and Rational Numbers 44 2.4 Irrational Numbers and Floating-Point Numbers 48 2.5 Algebraic Numbers 54 2.6 Complex Numbers 59 3 Variables and Names 65 3.1 Assignment and Unassignment 65 3.2 Evaluation 73 3.3 Names of Variables 77 3.4 Basic Data Types 82 3.5 Attributes 86 3.6 Properties 87 4 Getting Around with Maple 95 4.1 Maple Input and Output 95 4.2 The Maple Library 101 4.3 Reading and Writing Files 105 4.4 Importing and Exporting Numerical Data 110 4.5 Low-level I/O 113 4.6 Code Generation 123 4.7 Changing Maple to Your Own Taste 129 5 Polynomials and Rational Functions 135 5.1 Univariate Polynomials 135 5.2 Multivariate Polynomials 140 5.3 Rational Functions 142 5.4 Conversions 144 6 Internal Data Representation and Substitution 149 6.1 Internal Representation of Polynomials 149 6.2 Generalized Rational Expressions 155 6.3 Substitution 158 7 Manipulation of Polynomials and Rational Expressions 173 7.1 Expansion 173 7.2 Factorization 176 7.3 Canonical Form and Normal Form 179 7.4 Normalization 181 7.5 Collection 183 7.6 Sorting 186 8 Functions 189 8.1 Mathematical Functions 189 8.2 Arrow Operators 193 8.3 Piecewise Defined Functions 195 8.4 Maple Procedures 202 8.5 Recursive Procedure Definitions 204 8.6 Unapply 209 8.7 Operations on Functions 210 8.8 Anonymous Functions 211 9 Differentiation 213 9.1 Symbolic Differentiation 213 9.2 Automatic Differentiation 221 10 Integration and Summation 227 10.1 Indefinite Integration 227 10.2 Definite Integration 236 10.3 Numerical Integration 241 10.4 Integral Transforms 242 10.5 Assisting Maple's Integrator 252 10.6 Summation 256 11 Series, Approximation, and Limits 267 11.1 Truncated Series 267 11.2 Approximation of Functions 278 11.3 Power Series 285 11.4 Limits 288 12 Composite Data Types 293 12.1 Sequence 293 12.2 Set 296 12.3 List 298 12.4 Arrays 304 12.5 Table: table 310 12.6 Last Name Evaluation 314 12.7 Function Call 317 12.10 Conversion between Composite Data Types 319 13 The Assume Facility 325 13.1 The Need for an Assume Facility 325 13.2 Basics of assume 329 13.3 An Algebra of Properties 332 13.4 Implementation of assume 335 13.6 Hierarchy of Properties 340 14 Simplification 343 14.1 Automatic Simplification 344 14.2 expand 346 14.3 combine 353 14.4 simplify 358 14.5 convert 364 14.6 Trigonometric Simplification 367 14.7 Simplification w.r.t. Side Relations 370 14.8 Control Over Simplification 374 14.9 Defining Your Own Simplification Routines 378 14.11 Simplification Chart 399 15 Graphics 387 15.1 Some Basic Two-Dimensional Plots 389 15.2 Options of plot 493 15.3 The Structure of Two-Dimensional Graphics 406 15.4 The plottools Package 412 15.5 Special Two-Dimensional Plots 416 15.6 Two-Dimensional Geometry 429 15.7 Plot Aliasing 432 15.8 A Common Mistake 433 15.9 Some Basic Three-Dimensional Plots 434 15.10 Options of plot3d 436 15.11 The Structure of Three-Dimensional Graphics 444 15.12 Special Three-Dimensional Plots 449 15.13 Data Plotting 457 15.14 Animation 467 15.15 List of Plot Options 469 16 Solving Equations 479 16.1 Equations in One Unknown 479 16.2 Abbreviations in solve 480 16.3 Some Difficulties 481 16.4 Systems of Equations 488 16.5 The Grobner Basis Method 499 16.6 Inequalities 505 16.7 Numerical Solvers 507 16.8 Other Solvers in Maple 509 17 Differential Equations 519 17.1 First Glance at ODEs 519 17.2 Analytic Solutions 520 17.3 Taylor Series Method 532 17.4 Power Series Method 534 17.5 Numerical Solutions 536 17.6 DEtools 548 17.7 Perturbation Methods 555 17.8 Partial Differential Equations 567 17.9 Lie Point Symmetries of PDEs 569 18 Linear Algebra: The linalg Package 575 18.1 Loading the Linalg Package 575 18.2 Creating New Vectors and Matrices 576 18.3 Vector and Matrix Arithmetic 580 18.4 Basic Matrix Functions 584 18.5 Structural Operations 589 18.6 Vector Operations 589 18.7 Standard Forms of Matrices 592 19 Linear Algebra: Applications 601 19.1 Kinematics of the Stanford Manipulator 601 19.2 A Three-Compartment Model of Cadmium Transfer 606 19.3 Molecular-Orbital Huckel Theory 618 19.4 Vector Analysis 623 19.5 Moore-Penrose Inverse 631
650 _aMAPLE
650 _aALGEBRA-SOFTWARE DE APLICACION
650 _aCOMPUTER ALGEBRA
650 _aPROGRAMAS DE ORDENADOR
650 _aMATHEMATICA-APLICATIVO
942 _cBK
_2udc
999 _c11117
_d11117