Concrete mathematics : a foundation for computer science / Ronald L. Graham, Donald E. Knuth, Oren Patashnik.

Por: Colaborador(es): Idioma: Inglés Detalles de publicación: Reading: Addison-Wesley, 1994Edición: 2ndDescripción: 657 pTipo de contenido:
  • texto
Tipo de medio:
  • sin mediación
Tipo de soporte:
  • volumen
ISBN:
  • 0201558025
Tema(s):
Contenidos:
Valoración
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Signatura topográfica Estado Fecha de vencimiento Código de barras Reserva de ítems
Libro Libro Facultad Regional Santa Fe - Biblioteca "Rector Comodoro Ing. Jorge Omar Conca" 519.6 G76 (Navegar estantería(Abre debajo)) Sólo Consulta 9253
Libro Libro Facultad Regional Santa Fe - Biblioteca "Rector Comodoro Ing. Jorge Omar Conca" 519.6 G76 (Navegar estantería(Abre debajo)) Disponible 9254
Libro Libro Facultad Regional Santa Fe - Biblioteca "Rector Comodoro Ing. Jorge Omar Conca" 519.6 G76 (Navegar estantería(Abre debajo)) Disponible 9255
Total de reservas: 0

CONTENIDO
1 Recurrent Problems 1
1.1 The Tower of Hanoi 1
1.2 Lines in the Plane 4
1.3 The Josephus Problem 8
Exercises 17
2 Sums 21
2.1 Notation 21
2.2 Sums and Recurrences 25
2.3 Manipulation of Sums 30
2.4 Multiple Sums 34
2.5 General Methods 41
2.6 Finite and Infinite Calculus 47
2.7 Infinite Sums 56
Exercises 62
3 Integer Functions 67
3.1 Floors and Ceilings 67
3.2 Floor/Ceiling Applications 70
3.3 Floor/Ceiling Recurrences 78
3.4 mod: The Binary Operation 81
3.5 Floor/Ceiling Sums 86
Exercises 95
4 Number Theory 102
4.1 Divisibility 102
4.2 Primes 105
4.3 Prime Examples 107
4.4 Factorial Factors 111
4.5 Relative Primality 115
4.6 mod: The Congruence Relation 123
4.7 Independent Residues 126
4.8 Additional Applications 129
4.9 Phi and Mu 133
Exercises 144
5 Binomial Coefficients 153
5.1 Basic Identities 153
5.2 Basic Practice 172
5.3 Tricks of the Trade 186
5.4 Generating Functions 196
5.5 Hypergeometric Functions 204
5.6 Hypergeometric Transformations 216
5.7 Partial Hypergeometric Sums 223
5.8 Mechanical Summation 229
Exercises 242
6 Special Numbers 257
6.1 Stirling Numbers 257
6.2 Eulerian Numbers 267
6.3 Harmonic Numbers 272
6.4 Harmonic Summation 279
6.5 Bernoulli Numbers 283
6.6 Fibonacci Numbers 290
6.7 Continuants 301
Exercises 309
7 Generating Functions 320
7.1 Domino Theory and Change 320
7.2 Basic Maneuvers 331
7.3 Solving Recurrences 337
7.4 Special Generating Functions 350
7.5 Convolutions 353
7.6 Exponential Generating Functions 364
7.7 Dirichlet Generating Functions 370
Exercises 371
8 Discrete Probability 381
8.1 Definitions 381
8.2 Mean and Variance 387
8.3 Probability Generating Functions 394
8.4 Flipping Coins 401
8.5 Hashing 411
Exercises 427
9 Asymptotics 439
9.1 A Hierarchy 440
9.2 O Notation 443
9.3 O Manipulation 450
9.4 Two Asymptotic Tricks 463
9.5 Euler's Summation Formula 469
9.6 Final Summations 476
Exercises 489
A Answers to Exercises 497
B Bibliography 604
C Credits for Exercises 632
Index 637
List of Tables 657

No hay comentarios en este titulo.

para colocar un comentario.