TY - BOOK AU - Thomson,William T. AU - Dillon Dahleh,Marie TI - Theory of vibration with applications / T2 - Of Vibration With Applications SN - 013651068X PY - 1998/// CY - New Jersey PB - Prentice Hall KW - VIBRATION KW - FREE VIBRATION KW - OSCILLATORY MOTION KW - HARMONICALLY EXCITED VIBRATION KW - TRANSIENT VIBRATION KW - VIBRATING SYSTEMS KW - LAGRANGE'S EQUATION KW - RANDOM VIBRATIONS KW - NONLINEAR VIBRATIONS KW - VIBRATION OF CONTINUOUS SYSTEMS N1 - CONTENIDO CHAPTER 1 OSCILLATORY MOTION 5 1.1 Harmonic Motion 6 1.2 Periodic Motion 9 1.3 Vibration Terminology 11 CHAPTER 2 FREE VIBRATION 16 2.1 Vibration Model 16 2.2 Equation of Motion: Natural Frequency 16 2.3 Energy Method 20 2.4 Rayleigh Method: Effective Mass 23 2.5 Principle of Virtual Work 25 2.6 Viscously Damped Free Vibration 27 2.7 Logarithmic Decrement 31 2.8 Coulomb Damping 35 CHAPTER 3 HARMONICALLY EXCITED VIBRATION 49 3.1 Forced Harmonic Vibration 49 3.2 Rotating Unbalance 53 3.3 Rotor Unbalance 56 3.4 Whirling of Rotating Shafts 59 3.5 Support Motion 63 3.6 Vibration Isolation 65 3.7 Energy Dissipated by Damping 67 3.8 Equivalent Viscous Damping 70 3.9 Structural Damping 72 3.10 Sharpness of Resonance 74 3.11 Vibration-Measuring Instruments 75 CHAPTER 4 TRANSIENT VIBRATION 89 4.1 Impulse Excitation 89 4.2 Arbitrary Excitation 91 4.3 Laplace Transform Formulation 94 4.4 Pulse Excitation and Rise Time 97 4.5 Shock Response Spectrum 100 4.6 Shock Isolation 104 4.7 Finite Difference Numerical Computation 105 4.8 Runge-Kutta Method 112 CHAPTER 5 SYSTEMS WITH TWO OR MORE DEGREES OF FREEDOM 126 5.1 The Normal Mode Analysis 127 5.2 Initial Conditions 131 5.3 Coordinate Coupling 134 5.4 Forced Harmonic Vibration 139 5.5 Finite Difference Method for Systems of Equations 141 5.6 Vibration Absorber 144 5.7 Centrifugal Pendulum Vibration Absorber 145 5.8 Vibration Damper 147 CHAPTER 6 PROPERTIES OF VIBRATING SYSTEMS 163 6.1 Flexibility Influence Coefficients 164 6.2 Reciprocity Theorem 167 6.3 Stiffness Influence Coefficients 172 6.4 Stiffness Matrix of Beam Elements 176 6.5 Static Condensation for Pinned Joints 176 6.6 Orthogonality of Eigenvectors 177 6.7 Modal Matrix 179 6.8 Decoupling Forced Vibration Equations 181 6.9 Modal Damping in Forced Vibration 182 6.10 Normal Mode Summation 183 6.11 Equal Roots 187 6.12 Unrestrained (Degenerate) Systems 189 CHAPTER 7 LAGRANGE'S EQUATION 199 7.1 Generalized Coordinates 199 7.2 Virtual Work 204 7.3 Lagrange's Equation 207 7.4 Kinetic Energy, Potential Energy, and Generalized Force in Terms of Generalized Coordinates q 214 7.5 Assumed Mode Summation 216 CHAPTER 8 COMPUTATIONAL METHODS 227 8.1 Root Solving 227 8.2 Eigenvectors by Gauss Elimination 229 8.3 Matrix Iteration 230 8.4 Convergence of the Iteration Procedure 233 8.5 The Dynamic Matrix 233 8.6 Transformation Coordinates (Standard Computer Form) 234 8.7 Systems with Discrete Mass Matrix 235 8.8 Cholesky Decomposition 237 8.9 Jacobi Diagonalization 242 8.10 QR Method for Eigenvalue and Eigenvector Calculation 247 CHAPTER 9 VIBRATION OF CONTINUOUS SYSTEMS 268 9.1 Vibrating String 268 9.2 Longitudinal Vibration of Rods 271 9.3 Torsional Vibration of Rods 273 9.4 Vibration of Suspension Bridges 276 9.5 Euler Equation for Beams 281 9.6 System with Repeated Identical Sections 289 CHAPTER 10 INTRODUCTION TO THE FINITE ELEMENT METHOD 287 10.1 Element Stiffness and Mass 287 10.2 Stiffness and Mass for the Beam Element 292 10.3 Transformation of Coordinates (Global Coordinates) 295 10.4 Element Stiffness and Element Mass in Global Coordinates 297 10.5 Vibrations Involving Beam Elements 302 10.6 Spring Constraints on Structure 309 10.7 Generalized Force for Distributed Load 311 10.8 Generalized Force Proportional to Displacement 313 CHAPTER 11 MODE-SUMMATION PROCEDURES FOR CONTINUOUS SYSTEMS 329 11.1 Mode-Summation Method 329 11.2 Normal Modes of Constrained Structures 335 11.3 Mode-Acceleration Method 339 11.4 Component-Mode Synthesis 341 CHAPTER 12 CLASSICAL METHODS 351 12.1 Rayleigh Method 351 12.2 Dunkerley's Equation 358 12.3 Rayleigh-Ritz Method 363 12.4 Holzer Method 366 12.5 Digital Computer Program for the Torsional System 369 12.6 Myklestad's Method for Beams 371 12.7 Coupled Flexure-Torsion Vibration 375 12.8 Transfer Matrices 376 12.9 Systems with Damping 378 12.10 Geared System 380 12.11 Branched Systems 381 12.12 Transfer Matrices for Beams 383 CHAPTER 13 RANDOM VIBRATIONS 395 13.1 Random Phenomena 395 13.2 Time Averaging and Expected Value 396 13.3 Frequency Response Function 398 13.4 Probability Distribution 401 13.5 Correlation 407 13.6 Power Spectrum and Power Spectral Density 411 13.7 Fourier Transforms 417 13.8 FTs and Response 424 CHAPTER 14 NONLINEAR VIBRATIONS 436 14.1 Phase Plane 436 14.2 Conservative Systems 438 14.3 Stability of Equilibrium 441 14.4 Method of Isoclines 443 14.5 Perturbation Method 445 14.6 Method of Iteration 448 14.7 Self-Excited Oscillations 451 14.8 Runge-Kutta Method 453 APPENDICES A Specifications of Vibration Bounds 462 B Introduction to Laplace Transformation 464 C Determinants and Matrices 469 D Normal Modes of Uniform Beams 479 E Introduction to MATLABOR 487 F Computer Programs 492 G Convergence to Higher Modes 501 ANSWERS TO SELECTED PROBLEMS 506 INDEX 519 ER -