Foundation analysis and design / (Registro nro. 11038)

Detalles MARC
000 -Cabecera
Campo de control de longitud fija 13882nam a2200337 a 4500
003 - Identificador del Número de control
Identificador del número de control AR-sfUTN
008 - Códigos de información de longitud fija-Información general
Códigos de información de longitud fija 170717b ||||| |||| 00| 0 d
020 ## - ISBN
ISBN 0079122477
040 ## - Fuente de la catalogación
Centro transcriptor AR-sfUTN
041 ## - Código de lengua
Código de lengua del texto eng
080 ## - CDU
Clasificación Decimal Universal 624.15 B681
Edición de la CDU 2000
100 1# - Punto de acceso principal-Nombre de persona
Nombre personal Bowles, Joseph E.
245 10 - Mención de título
Título Foundation analysis and design /
Mención de responsabilidad Joseph E. Bowles.
250 ## - Mención de edición
Mención de edición 5nd.
260 ## - Publicación, distribución, etc. (pie de imprenta)
Lugar de publicación, distribución, etc. New York:
Nombre del editor, distribuidor, etc. McGraw-Hill,
Fecha de publicación, distribución, etc. 1996
300 ## - Descripción física
Extensión 1175 p.
336 ## - Tipo de contenido
Fuente rdacontent
Término de tipo de contenido texto
Código de tipo de contenido txt
337 ## - Tipo de medio
Fuente rdamedia
Nombre del tipo de medio sin mediación
Código del tipo de medio n
338 ## - Tipo de soporte
Fuente rdacarrier
Nombre del tipo de soporte volumen
Código del tipo de soporte nc
505 80 - Nota de contenido con formato
Nota de contenido con formato CONTENIDO<br/>Preface xiii<br/>About the Computer Programs xvii<br/>List of Primary Symbols Used in Text xix<br/>1. Introduction 1<br/>1.1 Foundations: Their Importance and Purpose 1<br/>1.2 Foundation Engineering 1<br/>1.3 Foundations: Classifications and Select Definitions 3<br/>1.4 Foundations: General Requirements 6<br/>1.5 Foundations: Additional Considerations 7<br/>1.6 Foundations: Selection of Type 9<br/>1.7 The International System of Units (SI) and the Foot-pound-second (Fps) System 9<br/>1.8 Computational Accuracy versus Design Precision 12<br/>1.9 Computer Programs in Foundation Analysis and Design 13<br/>2. Geotechnical and Index Properties: Laboratory Testing; Settlement and Strength Correlations 15<br/>2.1 Introduction 15<br/>2.2 Foundation Subsoils 16<br/>2.3 Soil Volume and Density Relationships 17<br/>2.4 Major Factors That Affect the Engineering Properties of Soils 21<br/>2.5 Routine Laboratory Index Soil Tests 24<br/>2.6 Soil Classification Methods in Foundation Design 29<br/>2.7 Soil Material Classification Terms 35<br/>2.8 In Situ Stresses and Ko Conditions 39<br/>2.9 Soil Water; Soil Hydraulics 46<br/>2.10 Consolidation Principles 56<br/>2.11 Shear Strength 90<br/>2.12 Sensitivity and Thixotropy 112<br/>2.13 Stress Paths 113<br/>2.14 Elastic Properties of Soil 121<br/>2.15 Isotropic and Anisotropic Soil Masses 127<br/>Problems 131<br/>3. Exploration, Sampling, and In Situ Soil Measurements 135<br/>3.1 Data Required 135<br/>3.2 Methods of Exploration 136<br/>3.3 Planning the Exploration Program 137<br/>3.4 Soil Boring 141<br/>3.5 Soil Sampling 145<br/>3.6 Underwater Sampling 152<br/>3.7 The Standard Penetration Test (SPT) 154<br/>3.8 SPT Correlations 162<br/>3.9 Design N Values 165<br/>3.10 Other Penetration Test Methods 166<br/>3.11 Cone Penetration Test (CPT) 167<br/>3.12 Field Vane Shear Testing (FVST) 183<br/>3.13 The Borehole Shear Test (BST) 189<br/>3.14 The Flat Dilatometer Test (DMT) 190<br/>3.15 The Pressuremeter Test (PMT) 194<br/>3.16 Other Methods for In Situ Ko 198<br/>3.17 Rock Sampling 202<br/>3.18 Groundwater Table (GWT) Location 204<br/>3.19 Number and Depth of Borings 205<br/>3.20 Drilling and/or Exploration of Closed Landfills or Hazardous Waste Sites 206<br/>3.21 The Soil Report 206<br/>Problems 210<br/>4. Bearing Capacity of Foundations 213<br/>4.1 Introduction 213<br/>4.2 Bearing Capacity 214<br/>4.3 Bearing-capacity Equations 219<br/>4.4 Additional Considerations When Using the Bearing-capacity Equations 228<br/>4.5 Bearing-capacity Examples 231<br/>4.6 Footings with Eccentric or Inclined Loadings 236<br/>4.7 Effect of Water Table on Bearing Capacity 249<br/>4.8 Bearing Capacity for Footings on Layered Soils 251<br/>4.9 Bearing Capacity of Footings on Slopes 258<br/>4.10 Bearing Capacity from SPT 263<br/>4.11 Bearing Capacity Using the Cone Penetration Test (CPT) 266<br/>4.12 Bearing Capacity from Field Load Tests 267<br/>4.13 Bearing Capacity of Foundations with Uplift or Tension Forces 270<br/>4.14 Bearing Capacity Based on Building Codes (Presumptive Pressure) 274<br/>4.15 Safety Factors in Foundation Design 275<br/>4.16 Bearing Capacity of Rock 277<br/>Problems 280<br/>5. Foundation Settlements 284<br/>5.1 The Settlement Problem 284<br/>5.2 Stresses in Soil Mass Due to Footing Pressure 286<br/>5.3 The Boussinesq Method For qv 287<br/>5.4 Special Loading Cases for Boussinesq Solutions 296<br/>5.5 Westergaard's Method for Computing Soil Pressures 301<br/>5.6 Immediate Settlement Computations 303<br/>5.7 Rotation of Bases 310<br/>5.8 Immediate Settlements: Other Considerations 313<br/>5.9 Size Effects on Settlements and Bearing Capacity 316<br/>5.10 Alternative Methods of Computing Elastic Settlements 323<br/>5.11 Stresses and Displacements in Layered and Anisotropic Soils 326<br/>5.12 Consolidation Settlements 329<br/>5.13 Reliability of Settlement Computations 337<br/>5.14 Structures on Fills 337<br/>5.15 Structural Tolerance to Settlement and Differential Settlements 338<br/>5.16 General Comments on Settlements 340<br/>Problems 341<br/>6. Improving Site Soils for Foundation Use 344<br/>6.1 Introduction 344<br/>6.2 Lightweight and Structural Fills 346<br/>6.3 Compaction 347<br/>6.4 Soil-cement, Lime, and Fly Ash 351<br/>6.5 Precompression to Improve Site Soils 352<br/>6.6 Drainage Using Sand Blankets and Drains 353<br/>6.7 Sand Columns to Increase Soil Stiffness 356<br/>6.8 Stone Columns 358<br/>6.9 Soil-cement Piles/Columns 360<br/>6.10 Jet Grouting 363<br/>6.11 Foundation Grouting and Chemical Stabilization 364<br/>6.12 Vibratory Methods to Increase Soil Density 365<br/>6.13 Use of Geotextiles to Improve Soil 367<br/>6.14 Altering Groundwater Conditions 368<br/>Problems 369<br/>7. Factors to Consider in Foundation Design 370<br/>7.1 Footing Depth and Spacing 370<br/>7.2 Displaced Soil Effects 373<br/>7.3 Net versus Gross Soil Pressure: Design Soil Pressures 373<br/>7.4 Erosion Problems for Structures Adjacent to Flowing Water 375<br/>7.5 Corrosion Protection 376<br/>7.6 Water Table Fluctuation 376<br/>7.7 Foundations in Sand and Silt Deposits 377<br/>7.8 Foundations on Loess and Other Collapsible Soils 378<br/>7.9 Foundations on Unsaturated Soils Subject to Volume Change with Change in Water Content 380<br/>7.10 Foundations on Clays and Clayey Silts 395<br/>7.11 Foundations on Residual Soils 397<br/>7.12 Foundations on Sanitary Landfill Sites 397<br/>7.13 Frost Depth and Foundations on Permafrost 399<br/>7.14 Environmental Considerations 400<br/>Problems 401<br/>8. Spread Footing Design 403<br/>8.1 Footings: Classification and Purpose 403<br/>8.2 Allowable Soil Pressures in Spread Footing Design 404<br/>8.3 Assumptions Used in Footing Design 405<br/>8.4 Reinforced-concrete Design: USD 406<br/>8.5 Structural Design of Spread Footings 411<br/>8.6 Bearing Plates and Anchor Bolts 425<br/>8.7 Pedestals 433<br/>8.8 Base Plate Design with Overturning Moments 437<br/>8.9 Rectangular Footings 445<br/>8.10 Eccentrically Loaded Spread Footings 449<br/>8.11 Unsymmetrical Footings 465<br/>8.12 Wall Footings and Footings for Residential Construction 466<br/>Problems 469<br/>9. Special Footings and Beams on Elastic Foundations 472<br/>9.1 Introduction 472<br/>9.2 Rectangular Combined Footings 472<br/>9.3 Design of Trapezoid-shaped Footings 481<br/>9.4 Design of Strap (or Cantilever) Footings 486<br/>9.5 Footings for Industrial Equipment 489<br/>9.6 Modulus of Subgrade Reaction 501<br/>9.7 Classical Solution of Beam on Elastic Foundation 506<br/>9.8 Finite-element Solution of Beam on Elastic Foundation 509<br/>9.9 Ring Foundations 523<br/>9.10 General Comments on the Finite-element Procedure 531<br/>Problems 534<br/>10. Mat Foundations 537<br/>10.1 Introduction 537<br/>10.2 Types of Mat Foundations 538<br/>10.3 Bearing Capacity of Mat Foundations 539<br/>10.4 Mat Settlements 540<br/>10.5 Modulus of Subgrade Reaction ks for Mats and Plates 544<br/>10.6 Design of Mat Foundations 548<br/>10.7 Finite-difference Method for Mats 552<br/>10.8 Finite-element Method for Mat Foundations 557<br/>10.9 The Finite-grid Method (FGM) 558<br/>10.10 Mat Foundation Examples Using the FGM 565<br/>10.11 Mat-superstructure Interaction 576<br/>10.12 Circular Mats or Plates 576<br/>10.13 Boundary Conditions 587<br/>Problems 587<br/>11. Lateral Earth Pressure 589<br/>11.1 The Lateral Earth Pressure Problem 589<br/>11.2 Active Earth Pressure 589<br/>11.3 Passive Earth Pressure 593<br/>11.4 Coulomb Earth Pressure Theory 594<br/>11.5 Rankine Earth Pressures 601<br/>11.6 General Comments About Both Methods 604<br/>11.7 Active and Passive Earth Pressure Using Theory of Plasticity 609<br/>11.8 Earth Pressure on Walls, Soil-tension Effects, Rupture Zone 611<br/>11.9 Reliability of Lateral Earth Pressures 616<br/>11.10 Soil Properties for Lateral Earth Pressure Computations 617<br/>11.11 Earth-pressure Theories in Retaining Wall Problems 620<br/>11.12 Graphical and Computer Solutions for Lateral Earth Pressure 623<br/>11.13 Lateral Pressures by Theory of Elasticity 629<br/>11.14 Other Causes of Lateral Pressure 640<br/>11.15 Lateral Wall Pressure from Earthquakes 640<br/>11.16 Pressures in Silos, Grain Elevators, and Coal Bunkers 646<br/>Problems 653<br/>12. Mechanically Stabilized Earth and Concrete Retaining Walls 657<br/>12.1 Introduction 657<br/>12.2 Mechanically Reinforced Earth Walls 658<br/>12.3 Design of Reinforced Earth Walls 665<br/>12.4 Concrete Retaining Walls 681<br/>12.5 Cantilever Retaining Walls 683<br/>12.6 Wall Stability 685<br/>12.7 Wall Joints 691<br/>12.8 Wall Drainage 692<br/>12.9 Soil Properties for Retaining Walls 693<br/>12.10 General Considerations in Concrete Retaining Wall Design 695<br/>12.11 Allowable Bearing Capacity 696<br/>12.12 Wall Settlements 696<br/>12.13 Retaining Walls of Varying Height; Abutments and Wingwalls 698<br/>12.14 Counterfort Retaining Walls 700<br/>12.15 Basement or Foundation Walls; Walls for Residential Construction 701<br/>12.16 Elements of ACI 318- Alternate Design Method 702<br/>12.17 Cantilever Retaining Wall Examples 704<br/>Problems 723<br/>13. Sheet-pile Walls: Cantilevered and Anchored 725<br/>13.1 Introduction 725<br/>13.2 Types and Materials Used for Sheetpiling 728<br/>13.3 Soil Properties for Sheet-pile Walls 732<br/>13.4 Stability Numbers for Sheet-pile Walls 737<br/>13.5 Sloping Dredge Line 738<br/>13.6 Finite-element Analysis of Sheet-pile Walls 741<br/>13.7 Finite-element Examples 747<br/>13.8 Anchor Rods, Wales, and Anchorages for Sheetpiling 771<br/>13.9 Overall Wall Stability and Safety Factors 781<br/>Problems 782<br/>14. Walls for Excavations 785<br/>14.1 Construction Excavations 785<br/>14.2 Soil Pressures on Braced Excavation Walls 791<br/>14.3 Conventional Design of Braced Excavation Walls 795<br/>14.4 Estimation of Ground Loss around Excavations 803<br/>14.5 Finite-element Analysis for Braced Excavations 806<br/>14.6 Instability Due to Heave of Bottom of Excavation 811<br/>14.7 Other Causes of Cofferdam Instability 815<br/>14.8 Construction Dewatering 816<br/>14.9 Slurry-wall (or -Trench) Construction 820<br/>Problems 826<br/>15. Cellular Cofferdams 828<br/>15.1 Cellular Cofferdams: Types and Uses 828<br/>15.2 Cell Fill 836<br/>15.3 Stability and Design of Cellular Cofferdams 837<br/>15.4 Bearing Capacity 849<br/>15.5 Cell Settlement 849<br/>15.6 Practical Considerations in Cellular Cofferdam Design 850<br/>15.7 Design of Diaphragm Cofferdam Cell 853<br/>15.8 Circular Cofferdam Design 857<br/>15.9 Cloverleaf Cofferdam Design 864<br/>Problems 865<br/>16. Single Piles - Static Capacity and Lateral Loads; Pile/Pole Buckling 867<br/>16.1 Introduction 867<br/>16.2 Timber Piles 869<br/>16.3 Concrete Piles 875<br/>16.4 Steel Piles 880<br/>16.5 Corrosion of Steel Piles 883<br/>16.6 Soil Properties for Static Pile Capacity 883<br/>16.7 Static Pile Capacity 885<br/>16.8 Ultimate Static Pile Point Capacity 891<br/>16.9 Pile Skin Resistance Capacity 898<br/>16.10 Pile Settlements 907<br/>16.11 Static Pile Capacity: Examples 909<br/>16.12 Piles in Permafrost 921<br/>16.13 Static Pile Capacity Using Load-transfer Load-test Data 925<br/>16.14 Tension Piles - Piles for Resisting Uplift 928<br/>16.15 Laterally Loaded Piles 929<br/>16.16 Laterally Loaded Pile Examples 948<br/>16.17 Buckling of Fully and Partially Embedded Piles and Poles 953<br/>Problems 963<br/>17. Single Piles: Dynamic Analysis, Load Tests 968<br/>17.1 Dynamic Analysis 968<br/>17.2 Pile Driving 968<br/>17.3 The Rational Pile Formula 973<br/>17.4 Other Dynamic Formulas and General Considerations 978<br/>17.5 Reliability of Dynamic Pile-driving Formulas 985<br/>17.6 The Wave Equation 986<br/>17.7 Pile-load Tests 996<br/>17.8 Pile-driving Stresses 999<br/>17.9 General Comments on Pile Driving 1003<br/>Problems 1004<br/>18. Pile Foundations: Groups 1006<br/>18.1 Single Piles versus Pile Groups 1006<br/>18.2 Vertically Loaded Pile Groups 1006<br/>18.3 Efficiency of Pile Groups 1008<br/>18.4 Stresses on Underlying Strata from Piles 1011<br/>18.5 Settlements of Pile Groups 1019<br/>18.6 Pile Caps 1027<br/>18.7 Batter Piles 1029<br/>18.8 Negative Skin Friction 1029<br/>18.9 Laterally Loaded Pile Groups 1035<br/>18.10 Matrix Analysis for Pile Groups 1040<br/>18.11 Pile Cap Design by Computer 1051<br/>Problems 1053<br/>19. Drilled Piers or Caissons 1055<br/>19.1 Introduction 1055<br/>19.2 Current Construction Methods 1055<br/>19.3 When to Use Drilled Piers 1062<br/>19.4 Other Practical Considerations for Drilled Piers 1063<br/>19.5 Capacity Analysis of Drilled Piers 1065<br/>19.6 Settlements of Drilled Piers 1072<br/>19.7 Structural Design of Drilled Piers 1075<br/>19.8 Drilled Pier Design Examples 1076<br/>19.9 Laterally Loaded Drilled Pier Analysis 1081<br/>19.10 Drilled Pier Inspection and Load Testing 1086<br/>Problems 1087<br/>20. Design of Foundations for Vibration Controls 1090<br/>20.1 Introduction 1090<br/>20.2 Elements of Vibration Theory 1090<br/>20.3 The General Case of a Vibrating Base 1096<br/>20.4 Soil Springs and Damping Constants 1098<br/>20.5 Soil Properties for Dynamic Base Design 1104<br/>20.6 Unbalanced Machine Forces 1111<br/>20.7 Dynamic Base Example 1114<br/>20.8 Coupled Vibrations 1120<br/>20.9 Embedment Effects on Dynamic Base Response 1123<br/>20.10 General Considerations in Designing Dynamic Bases 1125<br/>20.11 Pile-supported Dynamic Foundations 1126<br/>Problems 1133<br/>Appendix A: General Pile-data and Pile Hammer Tables 1135<br/>A.1 HP Pile Dimensions and Section Properties 1136<br/>A.2 Typical Pile-driving Hammers from Various Sources 1137<br/>A.3 Steel Sheetpiling Sections Produced in the United States 1139<br/>A.4 Typical Available Steel Pipe Sections Used for Piles and Caisson Shells 1141<br/>A.5 Typical Prestressed-concrete Pile Sections - Both Solid and Hollow-core (HC) 1143<br/>References 1144<br/>Author Index 1165<br/>Index 1169
650 ## - Punto de acceso adicional de materia - Término de materia
Término de materia FOUNDATIONS
650 ## - Punto de acceso adicional de materia - Término de materia
Término de materia LABORATORY TESTING
650 ## - Punto de acceso adicional de materia - Término de materia
Término de materia SOIL MEASUREMENT
650 ## - Punto de acceso adicional de materia - Término de materia
Término de materia BEARING CAPACITY OF FOUNDATIONS
650 ## - Punto de acceso adicional de materia - Término de materia
Término de materia FOUNDATIONS SETTLEMENT
650 ## - Punto de acceso adicional de materia - Término de materia
Término de materia PILE FOUNDATIONS
650 ## - Punto de acceso adicional de materia - Término de materia
Término de materia MECANICA DE SUELOS
650 ## - Punto de acceso adicional de materia - Término de materia
Término de materia CIMENTACIONES
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Tipo de ítem Koha Libro
Esquema de clasificación Clasificación Decinal Universal
Existencias
Estado Estado perdido Estado de conservación Tipo de préstamo Biblioteca Biblioteca Fecha de adquisición Número de inventario Total Checkouts ST completa de Koha Código de barras Date last seen Date last checked out Precio efectivo a partir de Tipo de ítem Koha
      Sólo Consulta Facultad Regional Santa Fe - Biblioteca "Rector Comodoro Ing. Jorge Omar Conca" Facultad Regional Santa Fe - Biblioteca "Rector Comodoro Ing. Jorge Omar Conca" 02/02/2018 6835 3 624.15 B681 6835 14/12/2023 14/11/2023 02/02/2018 Libro